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F Güng̈or†
Department of Mathematics, Faculty of Science, Istanbul Technical University, 80626, Istanbul,
Turkey

Received 1 April 1997, in final form 4 June 1997

Abstract. This paper is devoted to a systematic construction of second-order differential
equations invariant under the Poincaré, similitude and conformal groups in three-dimensional
spacetime. A classification of all possible realizations of the Lie algebras under the action of the
group of local diffeomorphisms ofR4 is presented. Then by means of the differential invariants
the most general invariant differential equations of second order are constructed.

1. Introduction

In [1], the problem of constructing second-order differential equations invariant under
the Poincaŕe, similitude and conformal groups in two-dimensional Minkowski space was
considered. In this paper we discuss the same problem in three-dimensional spacetime
leading to different types of invariant equations from those arising in the two-dimensional
case.

The motivation for constructing equations invariant under a prescribed symmetry group,
also known as inverse problems, is two-fold. First, we classify equations admitting some
physically important symmetry groups. Secondly, knowing that by construction these
equations are invariant we are able to solve them or at least find certain explicit particular
solutions by using the symmetry reduction method. Consequently, the inverse problem
appears to be of interest both from a mathematical and physical point of view.

The paper is organized as follows. In section 2, we give an overview of the differential
invariants and invariant equations. In section 3, we obtain the realizations of the Lie algebras
p(2, 1), s(2, 1) and c(2, 1) by vector fields in four variables(x, y, t, u). In section 4, we
obtain the second-order differential invariants and hence the invariant equations.

Throughout the paper, the requirement of symmetry will be meant in the sense that if
a second-order equation is invariant under some one-parameter group, then this equation is
annihilated by the second-order prolongations everywhere, not only on the solution set of
the equation.

2. Mathematical preliminaries and notation

A detailed and modern discussion of the Lie theory of symmetry groups of differential
equations can be found in [2, 3]. LetG be a local Lie group of transformations acting
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on the spaceX ⊗ U of independent and dependent variables. LetG(n) = pr(n)G denote
the prolonged group action on the jet spaceJ n whose coordinates are denoted by(x, u(n)).
The space of infinitesimal generators ofG, i.e. its Lie algebra will be denoted byg with
associated prolongationg(n) = pr(n)g.

We present a number of definitions and theorems which will be used throughout the
paper.

Definition 1. A differential invariant of orderr 6 n is a scalar functionI : J n → R which
satisfies

I (g(n) · (x, u(n))) = I (x, u(n))
for all g(n) ∈ G(n) and all(x, u(n)) ∈ J n.
A relative differential invariant is a differential function which is invariant, up to a factor,
under the prolonged group action. We denote the set of all differential invariants of order
k by Ik(g).
Definition 2. A set of kth order differential invariants{I1, I2, . . . , Ir} is said to form a
local basis ofIk(g) if every differential invariantI ∈ Ik(g) can be locally represented
as I = F(I1, I2, . . . , Ir ) for some smooth functionF and the functionsI1, I2, . . . , Ir are
functionally independent.

Proposition 3.If I1, I2, . . . Ir ∈ Ik(g) andF(x1, x2, . . . , xr) is an arbitrary smooth function
of r variables thenF(I1, I2, . . . Ir ) ∈ Ik(g).
Proposition 4.A function I : J n → R is a differential invariant for a connected
transformation groupG if and only if for some differential functionµ

pr(n)v(I ) = µ(x, u(n))I
for every prolonged infinitesimal generator pr(n)v ∈ g(n).

Whenµ = 0, I is called an absolute or ordinary invariant. Differential invariants permit
us to construct a number of classes of differential equations with a prescribed symmetry.
Relative invariants are equally important in the construction of invariant equations. A
classification of all wave equations using relative invariants has been carried out in [4]

In the following invariant will mean absolute invariant.

Theorem 5.Let G be a transformation group and let{I1, I2, . . . Ik} be a complete system
of functionally independentnth order differential invariants on an open subsetV n ⊂ J n.
A system of differential equations admitG as a symmetry group iff, when restricted to the
subsetV n, it can be written in terms of the differential invariants:

1ν(x, u
(n)) = Fν(I1, I2, . . . Ik) = 0 ν = 1, 2, . . . , l.

Lemma 6.Let v be a vector field defined onM. If x0 is not a singularity ofv, sov|x0 6= 0,
then there exists local rectifying coordinatesy = (y1, y2, . . . , yn) nearx0 such thatv = ∂y1.

3. Realization of the Lie algebras by vector fields

3.1. Poincaré, similitude and conformal groups inM(2, 1)

The group of isometries of the(2 + 1)-dimensional Minkowski space M(2, 1) with
coordinates(t, x, y) and metric ds2 = dt2 − dx2 − dy2, i.e. the group of point
transformations leaving the distance between two points in this space invariant (norm
preserving transformations) is the Poincaré group P(2, 1), also called inhomogeneous
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Lorentz group. The group extended by dilations is called similitude or extended Poincaré
group and has a structure

S(2, 1) = D B (SL(2,R) B T3)

where T3 are three-dimensional translations and SL(2,R) is the special linear group
isomorphic to O(2, 1) andB denotes the semidirect product. The similitude group is a
subgroup of the conformal group of spacetime, i.e. the group of all transformations leaving
the Lorentz metric form invariant. The conformal group is also locally isomorphic to the
de Sitter group SO(3, 2).

The conformal group C(2, 1) is generated by spacetime translationsPµ, µ = 0, 1, 2,
Lorentz boostsKi , i = 1, 2, infinitesimal rotationL3, dilation D and proper conformal
transformationsCµ, µ = 0, 1, 2. These generators satisfy nonzero commutation relations

[Ki, P0] = Pi [Pµ,D] = Pµ
[P0, C0] = 2D [P0, Ci ] = 2Ki
[P1,K1] = −P0 [P1, L3] = −P2

[P1, C0] = −2K1 [P1, C1] = −2D

[P1, C2] = −2L3 [P2,K2] = −P0

[P2, L3] = P1 [P2, C0] = −2K2

[P2, C1] = 2L3 [P2, C2] = −2D

[K1,K2] = −L3 [K1, L3] = −K2

[K1, C0] = C1 [K1, C1] = C0

[K2, C0] = C2 [K2, L3] = K1

[K2, C2] = C0 [L3, C1] = C2

[L3, C2] = −C1 [D,Cµ] = Cµ.

(3.1)

3.2. The Lie algebras realized by vector fields

We shall classify realizations of the Lie algebras p(2, 1) and its subalgebras s(2, 1) and
c(2, 1) associated with the conformal group and its subgroups in terms of vector fields

v = ξ(x, y, t, u)∂x + η(x, y, t, u)∂y + τ(x, y, t, u)∂t + φ(x, y, t, u)∂u (3.2)

up to diffeomorphisms

x̃ = X(x, y, t, u) ỹ = Y (x, y, t, u)
t̃ = T (x, y, t, u) ũ = U(x, y, t, u). (3.3)

We first realize the Abelian algebrat3 = {P0, P1, P2} in coordinates(t, x, y, u). According
to the rectification lemma 6 we can transformP0 which is of the form (3.2) to the standard
form ∂t . On using a transformation of the form (3.3) leaving∂t invariant, one can transform
P1 to ∂x . Similarly, a transformation leaving{∂t , ∂x} invariant leads to the translation∂y .
Finally, we have the generators of coordinate translations

{P0 = ∂t , P1 = ∂x, P2 = ∂y} (3.4)

as the realization of the three-dimensional algebrat3. From the commutation relations (3.1)
involving Pµ andK1,K2 andL3, the form ofK1,K2 andL3 is restricted to

K1 = (−t + A1(u))∂x + B1(u)∂y + (−x + C1(u))∂t +D1(u)∂u (3.5)

K2 = A2(u)∂x + (−t + B2(u))∂y + (−y + C2(u))∂t +D2(u)∂u (3.6)

L3 = (y + A3(u))∂x + (−x + B3(u))∂y + C3(u)∂t +D3(u)∂u. (3.7)
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Furthermore, a transformation leavingPµ, µ = 0, 1, 2 invariant, namely

x̃ = x + α(u) ỹ = y + β(u) t̃ = t + γ (u) ũ = δ(u)
with appropriate choices ofα, β, γ andδ, reducesK1 to precisely one of the following:

K1 = −t∂x − x∂t + B1(u)∂y (3.8a)

K1 = −t∂x − x∂t + u∂u. (3.8b)

Further, performing a transformation leaving{P0, P1, P2,K1} invariant

x̃ = x t̃ = t ỹ = y + ρ(u) ũ = u
we can setC2 = 0 or B2 = 0 in K2 of (3.6). If the commutation relations betweenK1, K2

andL3, i.e.

[K1,K2] = −L3 [K1, L3] = −K2 [K2, L3] = K1

are imposed we find the following realizations

P I : {P0 = ∂t , P1 = ∂x, P2 = ∂y,K1 = −t∂x − x∂t ,K2 = −t∂y + (−y + C2)∂t ,

L3 = (y − C2)∂x − x∂y} (3.9a)

P II :

{
P0 = ∂t , P1 = ∂x, P2 = ∂y,K1 = −t∂x − x∂t + u∂u,

K2 = −t∂y − y∂t +
(
a − u2

4a

)
∂u,

L3 = y∂x − x∂y +
(
a + u2

4a

)
∂u, a 6= 0

}
. (3.9b)

The first realization characterizes a class of algebras corresponding to an arbitrary
function C2(u). If we restrict ourselves to the fibre preserving transformations, namely
transformations in which the change in the independent variables are unaffected by the
dependent variables, then a standard realization which we will denote byP is obtained.

We now extend the realization (3.9) to that of the similitude algebra s(2, 1). If we add
a dilation generator to the standard realizationP and again use the commutation relations
involving D, we find

D = x∂x + y∂y + t∂t + a(u)∂u a(u) arbitrary. (3.10)

On invoking a transformation

x̃ = x t̃ = t ỹ = y ũ = σ(u)
we can transformD to either of the following

D = x∂x + y∂y + t∂t (3.11a)

D = x∂x + y∂y + t∂t + u∂u. (3.11b)

Obviously, p(2, 1) generators remain invariant under this transformation. In conclusion, we
obtain two inequivalent realizations of the similitude algebra represented by

S I : {{P },D = x∂x + y∂y + t∂t } (3.12a)

S II : {{P },D = x∂x + y∂y + t∂t + u∂u}. (3.12b)

Similarly, the realization (3.9b) leads to

S III : {{P II },D = x∂x + y∂y + t∂t }. (3.12c)
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We should mention that if we leaveP unchanged but transform the dilationD of (3.10)
into

D̃ = x∂x + y∂y + t∂t + 2

1− k u∂u (k 6= 1) (3.13)

and

D̂ = x∂x + y∂y + t∂t − 2

m
∂u (m 6= 0) (3.14)

then the corresponding realizationsS̃ and Ŝ represented by

S̃ :

{
{P }, D̃ = x∂x + y∂y + t∂t + 2

1− k u∂u
}

(3.15a)

Ŝ :

{
{P }, D̂ = x∂x + y∂y + t∂t − 2

m
∂u

}
(3.15b)

will permit us to construct certain invariant equations of physical importance.
Finally, the realizations of the algebra s(2, 1) can be extended to c(2, 1) by adding

generators of the proper conformal transformationsCµ, µ = 0, 1, 2. We only present the
final results:

K I : {{S I}, C0 = 2xt∂x + 2yt∂y + (x2+ y2+ t2)∂t ,
C1 = (t2+ x2− y2)∂x + 2xy∂y + 2xt∂t ,

C2 = 2xy∂x + (t2− x2+ y2)∂y + 2yt∂t } (3.16a)

K II : {{S II }, C0 = 2xt∂x + 2yt∂y + (x2+ y2+ t2)∂t + 2tu∂u,

C1 = (t2+ x2− y2)∂x + 2xy∂y + 2xt∂t + 2xu∂u,

C2 = 2xy∂x + (t2− x2+ y2)∂y + 2yt∂t + 2yu∂u}. (3.16b)

K III :

{
{S III }, C0 = 2xt∂x + 2yt∂y + (x2+ y2+ t2)∂t + 2

[
−ux +

(
u2

4a
− a

)
y

]
∂u,

C1 = (y2− x2− t2)∂x − 2xy∂y − 2xt∂t + 2

[
tu+

(
u2

4a
+ a

)
y

]
∂u,

C2 = −2xy∂x + (x2− y2− t2)∂y − 2yt∂t

+2

[(
− u

2

4a
+ a

)
t −

(
u2

4a
+ a

)
x

]
∂u

}
. (3.16c)

An extension of realizations (3.15a)–(3.15b) to conformal transformations can be written
as

K̃ :

{
{S̃}, C0 = 2xt∂x + 2yt∂y + (x2+ y2+ t2)∂t + 4

1− k tu∂u,

C1 = (t2+ x2− y2)∂x + 2xy∂y + 2xt∂t + 4

1− k ux∂u,

C2 = 2xy∂x + (t2− x2+ y2)∂y + 2yt∂t + 4

1− k uy∂u, k 6= 1

}
(3.17a)

K̂ :

{
{Ŝ}, C0 = 2xt∂x + 2yt∂y + (x2+ y2+ t2)∂t − 4

m
t∂u,

C1 = (t2+ x2− y2)∂x + 2xy∂y + 2xt∂t − 4

m
x∂u,

C2 = 2xy∂x + (t2− x2+ y2)∂y + 2yt∂t − 4

m
y∂u,m 6= 0

}
. (3.17b)
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All transformations corresponding to these generators are fibre preserving.

4. Differential invariants and invariant equations

Once the Lie algebra of the assumed symmetry group is realized in terms of vector fields on
the spaceX⊗U of independent and dependent variables, we can proceed to the construction
of invariant equations. To this end, we first assumea priori a general differential equation
written in terms of the jet variables defined on the jet spaceJ n. Next we need to find
the nth prolongations of the vector field. Since our primary interest is in the derivation
of relativistically invariant scalar equations we will limit ourselves to the most general
second-order (n = 2) partial differential equation (PDE) of the form

F(x, y, t, u, ui, uij ) = 0 i, j ∈ {x, y, t} (4.1)

invariant under the assumed group. One might as well consider more general equations and
construct higher-order invariant equations than in our case.

According to theorem 5, we can express equations invariant under a given group in
terms of the invariants of the prolonged group action, which require the calculation of the
second-order prolongations. Hence an invariant equation will have the form

F(I1, I2, . . . , Ik) = 0 (4.2)

where{I1, I2, . . . , Ik} forms a basis ofI2(g).
The second-order prolongations of the translation algebrat3 are immediate:

pr(2)Pµ = Pµ µ = 0, 1, 2. (4.3)

However, the other prolongations are more complicated. For example, the second
prolongation ofK1 is

pr(2)K1 = K1− ut∂ux − ux∂ut − 2uxt∂uxx − uyt∂uxy − (uxx + utt )∂uxt − uxy∂uyt − 2uxt∂utt .

(4.4)

In order to find invariants one must solve a system of first-order differential equations

pr(2)v(F ) = 0 (4.5)

for each vector fieldv chosen from the algebra andF having the form (4.1).
In the following sections, we compute the differential invariants and the invariant

equations running through each group previously realized, respectively.

4.1. Poincaré invariant equations

Let us find the differential invariants of the standard realization of p(2, 1). From the
requirement of invariance under the algebra of translationst3 it follows that F should
be independent of the variablesx, y, t . When pr(2)v(F ) = 0 is solved, nine functionally
independent invariants are found:

I1 = u I2 = uy I3 = uyy
I4 = u2

t − u2
x I5 = u2

yt − u2
xy

I6 = utt − uxx I7 = (ut − ux)2(uxx + 2uxt + utt )
I8 = (ut + ux)2(uxx − 2uxt + utt )
I9 = (uxy + uyt )(ut − ux).

(4.6)
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Since we wish to find the joint invariants of p(2, 1) we next express the vector field
pr(2)K2 in terms of the invariants of pr(2)K1 as coordinates, namely{I1, . . . , I9}. If we let
F(I1, I2, . . . , I9) act on pr(2)K2 and re-express the resulting expression using the invariants
Iµ, µ = 1, . . .9 we find only three invariants, namely

J1 = u J2 = I4− I 2
2 J3 = I6− I3.

In terms of the original jet variables they can be written as

J1 = u J2 = (∇u)2 = u2
t − u2

x − u2
y J3 = �u = utt − uxx − uyy

where � is the d’Alembert operator in M(2, 1) with the signature(+,−,−,−).
Since pr(2)L3 = [pr(2)K2, pr(2)K1], every joint differential invariant of{K1,K2} will
simultaneously be an invariant ofL3. Hence we conclude thatJ1, J2, J3 are invariants
of the standard Poincaré realization and the most general Poincaré invariant equation has
the form

F(u,�u, (∇u)2) = 0 (4.7)

whereF is an arbitrary function of its arguments. This includes the nonlinear Klein–Gordon
(d’Alembert) equation

�u = H(u) (4.8a)

and the first-order relativistic Hamilton–Jacobi equation

(∇u)2+ V (u) = E. (4.8b)

In passing, let us mention that the d’Alembert-eikonal system

�u = 0 (∇u)2 = 0

for which a general solution exists arises naturally when solving the problem of reducing
(4.8a) to ordinary differential equations (ODEs) [5].

In particular, settingJ3/J1 = λ gives the linear equation

�u = λu λ ∈ R.
Furthermore, an eikonal (nonlinear) and linear wave equation are obtained by settingJ2 = 0
andJ3 = 0.

For the less standard realizationP II , there exists no equation invariant under the full
group. Nevertheless, for certain subgroups a number of invariant equations can be obtained.
Among them, the most remarkable ones are�u = λu, (∇u)2 = µu2 andu2

yt − u2
xy = νu2.

4.2. Equations invariant under similitude group

The addition of the dilational invariance to Poincaré algebra reduces the Poincaré invariants
by one. The first realizationS I of s(2,1) yields the following invariants

J̃1 = J1 = u J̃2 = �u
(∇u)2

and the invariant equation becomes

F

(
u,
�u
(∇u)2

)
= 0. (4.9)

This equation has the form

�u = (∇u)2h(u) (4.10)
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for some arbitrary functionh. Similarly the second realizationS II gives rise to the invariant
equation

F(u�u, (∇u)2) = 0.

There exist two invariants of̃S:

Ĩ1 = u−k�u Ĩ2 = u−(k+1)(∇u)2 k 6= 1.

The invariant equation is

F(Ĩ1, Ĩ2) = 0. (4.11)

In particular,Ĩ1 = λ (constant) will give the nonlinear Klein–Gordon equation

�u = λuk. (4.12)

For Ŝ invariants are:

Î1 = e−mu�u Î2 = e−mu(∇u)2 m 6= 0

and the invariant equation is

F(Î1, Î2) = 0. (4.13)

SettingÎ1 = λ gives

�u = λemu m 6= 0 (4.14)

which is the scalar curvature equation in M(2, 1).

4.3. Conformally invariant equations

Since c(2, 1) contains s(2, 1) the conformal invariants will be constructed using s(2, 1)
invariantsJ̃1 and J̃2. Again, due to the relation pr(2)Ci = [pr(2)Ki, pr(2)C0], (i = 1, 2) it
is sufficient to solve only pr(2)C0(F ) = 0 and the result will be an invariant of the full
conformal group.

On imposing the condition pr(2)C0(F ) = 0 will reduce them to a single one. The
only equation invariant underK I is (∇u)2 = 0. The realizationK II has a single invariant
6 = 2I − 3J and hence the invariant equation is

�u− 3
2(∇u)2 = λ (constant). (4.15)

The condition pr(2)C0(F ) = 0 with C0 as in K̃ can be written in terms of thẽS invariants
as

utu
−k
(

4
∂F

∂I
+ (5− k)∂F

∂J

)
= 0.

Hence, there is only one invariant6 = (5− k)Ĩ1− 4Ĩ2 being automatically an invariant of
C1 andC2, which leads to the invariant equation

u−k�u− (5− k)
4

u−(k+1)(∇u)2 = λ. (4.16)

In particular, whenk = 5 we obtain

�u = λu5 λ ∈ R (4.17)

containing the linear wave equation�u = 0. We remark that, more generally, the equation
�u = λup, p = (n + 3)/(n − 1) is conformally invariant in M(n, 1) with n > 1 and a
corresponding equation in M(1, 1) does not come up.

Likewise, the only invariant ofK̂ is e−mu(�u + m
4 (∇u)2) and leads to the invariant

equation

�u+ m
4
(∇u)2 = λemu m 6= 0.
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5. Conclusions

The results of this paper can be summed up as follows. We showed that there exist two
inequivalent realizations of the Poincaré algebra p(2, 1). The first one depending on arbitrary
functions of dependent variable gives rise to a natural realization when restricted to fibre
preserving transformations. The other is a less standard realizationP II of (3.9b). We
find three inequivalent fibre preserving realizations of the similitude algebra given byS I ,
S II and S III . We remark that two realizations̃S and Ŝ which can be transformed by a
point transformation toS II provides physically important equations. The conformal algebra
allows three inequivalent realizations. Again, we transformed the second realizationK II to
K̃ and K̂ for catching physically important invariant equations. In section 4, we obtained
invariant second-order equations of the form (4.1). Since there is no restriction on the
invariance condition (4.5), i.e. the equation we wish to construct is annihilated only on
the solution set, here we do not obtain evolution-type equations. Instead, we found rather
general relativistically invariant equations.

When compared with the results of [1], again we find several realizations some of which
are physically less obvious and as in the two-dimensional case include more standard ones
as special cases. As is to be expected, in both dimensions the corresponding invariant
equations include linear and nonlinear Klein–Gordon- and eikonal-type equations. It is
interesting to note that in contrast to the two-dimensional case the conformally invariant
equations here are quite specific, namely we do not have a class of equations, but rather
a single equation. In particular we obtained�u = λu5 as a conformal invariant equation
which does not have a counterpart in M(1, 1).

As a by-product of the classification of invariant equations one can perform symmetry
reductions of the invariant equations obtained in section 4 and find group invariant solutions.
For instance, using the results of classification of all subgroups of the similitude group in
M(2, 1) given in [6] we can classify reduced equations which result in PDEs in two variables
and ODEs corresponding to one- and two-dimensional subgroups with generic orbits of
codimension two and one respectively. Next, we can perform a singularity analysis for the
second-order ODEs and pick out those of having Painlevé property and hence obtain exact
solutions. We plan to return to this problem in the near future.

Finally, we finish by stating that it is always desirable to have a classification of
equations admitting a given group at one’s disposal. For, by construction, they are
invariant under the group and symmetry methods and are immediately applicable to study
these equations from several respects such as finding symmetry reductions, hence finding
exact solutions, identifying integrable equations and establishing a connection between
integrability and symmetry.
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